Strategic Investment Decisions under Fast Mean-Reversion Stochastic Volatility
نویسندگان
چکیده
We are concerned with investment decisions when the spanning asset that correlates with the investment value undergoes a stochastic volatility dynamics. The project value in this case corresponds to the value of an American call with dividends, which can be priced by solving a generalized Black-Scholes free boundary value problem. Following ideas of Fouque et al., under the hypothesis of fast mean reversion, we obtain the formal asymptotic expansion of the project value and compute the adjustment of the price due to the stochastic volatility. We show that the presence of the stochastic volatility can alter the optimal time investment curve in a significative way, which in turn implies that caution should be taken with the assumption of constant volatility prevalent in many real option models. Additionally, we also present analytical results for the perpetual case. We also indicate how to calibrate to market data the model in the asymptotic regime.
منابع مشابه
Optimal switching decisions under stochastic volatility with fast mean reversion
We study infinite–horizon, optimal switching problems under a general class of stochastic volatility models that exhibit “fast” mean–reversion by using techniques from homogenisation theory. This leads to perturbation theory, providing closed–form approximations to the full switching problem which is often intractable, both analytically and numerically. We apply our general results to certain, ...
متن کاملOptimal Investment Problems and Volatility Homogenization Approximations
We describe some stochastic control problems in financial engineering arising from the need to find investment strategies to optimize some goal. Typically, these problems are characterized by nonlinear Hamilton-Jacobi-Bellman partial differential equations, and often they can be reduced to linear PDEs with the Legendre transform of convex duality. One situation where this cannot be achieved is ...
متن کاملStochastic Models of Energy Commodity Prices and Their Applications: Mean-reversion with Jumps and Spikes
In this paper, we present several mean-reversion jump di usion models to describe energy commodity spot prices. We incorporate multiple jumps, regime-switching and stochastic volatility in these models. Prices of various energy commodity derivatives are obtained under each model. We show how the electricity derivatives can be used to evaluate generation and transmission capacity. We also show f...
متن کاملSimple approximations for option pricing under mean reversion and stochastic volatility
This paper provides simple approximations for evaluating option prices and implied volatilities under stochastic volatility. Simple recursive formulae are derived that can easily be implemented in spreadsheets. The traditional random walk assumption, dominating in the analysis of financial markets, is compared with mean reversion which is often more relevant in commodity markets. Deterministic ...
متن کاملOption Pricing under a Mean Reverting Process with Jump-Diffusion and Jump Stochastic Volatility
An alternative option pricing model is proposed, in which the asset prices follow the jump-diffusion and exhibits mean reversion. The stochastic volatility follows the jump-diffusion with mean reversion. We find a formulation for the European-style option in terms of characteristic functions.
متن کامل